热卖商品
新闻详情
正则图联图的Ihara zeta函数及其应用-《厦门大学学报(自然科学版)》
来自 : jxmu.xmu.edu.cn/oa/dartic...as
发布时间:2021-03-25
[1] IHARA Y.On discrete subgrouos of the two by two project linear group over p-adic fields[J].J Math Soc Japan,1966,18:219-235.
[2] BASS H.The Ihara-Selberg zeta function of a tree lattice[J].Internat J Math,1992(3):717-797.
[3] NORTHSHIELD S.A note on the zeta function of a graph[J].J Combin Theory Ser B,1998,74:408-410.
[4] SOMODI M.On the Ihara zeta function and resistance distance-based indices[J].Linear Algebra and Its Applications,2017,513:201-209.
[5] BAPAT R B,GUTMAN I,XIAO W.A simple method for computing resistance distance[J].Z Natur-Forsch,2003,58a:494-498.
[6] BONCHEV D,BALABAN A T,LIU X,et al.Molecular cyclicity and centricity of polycyclic graphs.Ⅰ.Cyclicity based on resistance distances or reciprocal distances[J].Int J Quantum Chem,1994,50(1):1-20.
[7] KLEIN D J,RANDIC M.Resistance distance[J].J Math Chem,1993,12:81-95.
[8] GUTMAN I,FENG L,YU G.Degree resistance distance of unicyclic graphs[J].Trans Combin,2012,1(2):27-40.
[9] PALACIOS J L.Resistance distance in graphs and random walks[J].Int J Quantum Chem,2001,81:29-33.
[10] PALACIOS J L.Upper and lower bounds for the additive degree-Kirchhoff index[J].MATCH Commun Math Comput Chem,2013,70:651-655.
[11] CHEN H,ZHANG F.Resistance distance and the normalized Laplacian spectrum[J].Discrete Appl Math,2007,155:654-661.
[12] GUTMAN I,MOHAR B.The quasi-Wiener and the Kirchhoff indices coincide[J].Chem Inf Comput Sci,1996,36(5):982-985.
[13] ZHANG F Z.The schur complement and its applications [M].Berlin:Springer,2005:1-13.
[14] CUI S Y,TIAN G X.The spectrum and the signless Laplacian spectrum of coronae[J].Linear Algebra Appl,2012,437:1692-1700.
[15] GUTMAN I.Selected properties of the Schultz molecular topological index[J].J Chem Inf Comput Sci,1994,34:1087-1089.
[16] KLEIN D J,MIHALI’C Z,PLAVSI’C D,et al.Molecular topological index:a relation with the Wiener index[J].J Chem Inf Comput Sci,1992,32:304-305.[1] IHARA Y.On discrete subgrouos of the two by two project linear group over p-adic fields[J].J Math Soc Japan,1966,18:219-235.
[2] BASS H.The Ihara-Selberg zeta function of a tree lattice[J].Internat J Math,1992(3):717-797.
[3] NORTHSHIELD S.A note on the zeta function of a graph[J].J Combin Theory Ser B,1998,74:408-410.
[4] SOMODI M.On the Ihara zeta function and resistance distance-based indices[J].Linear Algebra and Its Applications,2017,513:201-209.
[5] BAPAT R B,GUTMAN I,XIAO W.A simple method for computing resistance distance[J].Z Natur-Forsch,2003,58a:494-498.
[6] BONCHEV D,BALABAN A T,LIU X,et al.Molecular cyclicity and centricity of polycyclic graphs.Ⅰ.Cyclicity based on resistance distances or reciprocal distances[J].Int J Quantum Chem,1994,50(1):1-20.
[7] KLEIN D J,RANDIC M.Resistance distance[J].J Math Chem,1993,12:81-95.
[8] GUTMAN I,FENG L,YU G.Degree resistance distance of unicyclic graphs[J].Trans Combin,2012,1(2):27-40.
[9] PALACIOS J L.Resistance distance in graphs and random walks[J].Int J Quantum Chem,2001,81:29-33.
[10] PALACIOS J L.Upper and lower bounds for the additive degree-Kirchhoff index[J].MATCH Commun Math Comput Chem,2013,70:651-655.
[11] CHEN H,ZHANG F.Resistance distance and the normalized Laplacian spectrum[J].Discrete Appl Math,2007,155:654-661.
[12] GUTMAN I,MOHAR B.The quasi-Wiener and the Kirchhoff indices coincide[J].Chem Inf Comput Sci,1996,36(5):982-985.
[13] ZHANG F Z.The schur complement and its applications [M].Berlin:Springer,2005:1-13.
[14] CUI S Y,TIAN G X.The spectrum and the signless Laplacian spectrum of coronae[J].Linear Algebra Appl,2012,437:1692-1700.
[15] GUTMAN I.Selected properties of the Schultz molecular topological index[J].J Chem Inf Comput Sci,1994,34:1087-1089.
[16] KLEIN D J,MIHALI’C Z,PLAVSI’C D,et al.Molecular topological index:a relation with the Wiener index[J].J Chem Inf Comput Sci,1992,32:304-305.
[2] BASS H.The Ihara-Selberg zeta function of a tree lattice[J].Internat J Math,1992(3):717-797.
[3] NORTHSHIELD S.A note on the zeta function of a graph[J].J Combin Theory Ser B,1998,74:408-410.
[4] SOMODI M.On the Ihara zeta function and resistance distance-based indices[J].Linear Algebra and Its Applications,2017,513:201-209.
[5] BAPAT R B,GUTMAN I,XIAO W.A simple method for computing resistance distance[J].Z Natur-Forsch,2003,58a:494-498.
[6] BONCHEV D,BALABAN A T,LIU X,et al.Molecular cyclicity and centricity of polycyclic graphs.Ⅰ.Cyclicity based on resistance distances or reciprocal distances[J].Int J Quantum Chem,1994,50(1):1-20.
[7] KLEIN D J,RANDIC M.Resistance distance[J].J Math Chem,1993,12:81-95.
[8] GUTMAN I,FENG L,YU G.Degree resistance distance of unicyclic graphs[J].Trans Combin,2012,1(2):27-40.
[9] PALACIOS J L.Resistance distance in graphs and random walks[J].Int J Quantum Chem,2001,81:29-33.
[10] PALACIOS J L.Upper and lower bounds for the additive degree-Kirchhoff index[J].MATCH Commun Math Comput Chem,2013,70:651-655.
[11] CHEN H,ZHANG F.Resistance distance and the normalized Laplacian spectrum[J].Discrete Appl Math,2007,155:654-661.
[12] GUTMAN I,MOHAR B.The quasi-Wiener and the Kirchhoff indices coincide[J].Chem Inf Comput Sci,1996,36(5):982-985.
[13] ZHANG F Z.The schur complement and its applications [M].Berlin:Springer,2005:1-13.
[14] CUI S Y,TIAN G X.The spectrum and the signless Laplacian spectrum of coronae[J].Linear Algebra Appl,2012,437:1692-1700.
[15] GUTMAN I.Selected properties of the Schultz molecular topological index[J].J Chem Inf Comput Sci,1994,34:1087-1089.
[16] KLEIN D J,MIHALI’C Z,PLAVSI’C D,et al.Molecular topological index:a relation with the Wiener index[J].J Chem Inf Comput Sci,1992,32:304-305.[1] IHARA Y.On discrete subgrouos of the two by two project linear group over p-adic fields[J].J Math Soc Japan,1966,18:219-235.
[2] BASS H.The Ihara-Selberg zeta function of a tree lattice[J].Internat J Math,1992(3):717-797.
[3] NORTHSHIELD S.A note on the zeta function of a graph[J].J Combin Theory Ser B,1998,74:408-410.
[4] SOMODI M.On the Ihara zeta function and resistance distance-based indices[J].Linear Algebra and Its Applications,2017,513:201-209.
[5] BAPAT R B,GUTMAN I,XIAO W.A simple method for computing resistance distance[J].Z Natur-Forsch,2003,58a:494-498.
[6] BONCHEV D,BALABAN A T,LIU X,et al.Molecular cyclicity and centricity of polycyclic graphs.Ⅰ.Cyclicity based on resistance distances or reciprocal distances[J].Int J Quantum Chem,1994,50(1):1-20.
[7] KLEIN D J,RANDIC M.Resistance distance[J].J Math Chem,1993,12:81-95.
[8] GUTMAN I,FENG L,YU G.Degree resistance distance of unicyclic graphs[J].Trans Combin,2012,1(2):27-40.
[9] PALACIOS J L.Resistance distance in graphs and random walks[J].Int J Quantum Chem,2001,81:29-33.
[10] PALACIOS J L.Upper and lower bounds for the additive degree-Kirchhoff index[J].MATCH Commun Math Comput Chem,2013,70:651-655.
[11] CHEN H,ZHANG F.Resistance distance and the normalized Laplacian spectrum[J].Discrete Appl Math,2007,155:654-661.
[12] GUTMAN I,MOHAR B.The quasi-Wiener and the Kirchhoff indices coincide[J].Chem Inf Comput Sci,1996,36(5):982-985.
[13] ZHANG F Z.The schur complement and its applications [M].Berlin:Springer,2005:1-13.
[14] CUI S Y,TIAN G X.The spectrum and the signless Laplacian spectrum of coronae[J].Linear Algebra Appl,2012,437:1692-1700.
[15] GUTMAN I.Selected properties of the Schultz molecular topological index[J].J Chem Inf Comput Sci,1994,34:1087-1089.
[16] KLEIN D J,MIHALI’C Z,PLAVSI’C D,et al.Molecular topological index:a relation with the Wiener index[J].J Chem Inf Comput Sci,1992,32:304-305.
本文链接: http://iharachem.immuno-online.com/view-738248.html
发布于 : 2021-03-25
阅读(0)
最新动态
2021-03-25
2021-03-25
2021-03-25
2021-03-25
2021-03-25
2021-03-25
2021-03-25
联络我们